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Abstract

Process-oriented rainfall-runoff models are designed to approximate the complex hy-
drologic processes within a specific catchment and in particular to simulate the dis-
charge at the catchment outlet. Most of these models exhibit a high degree of com-
plexity and require the determination of various parameters by calibration. Recently au-5

tomatic calibration methods became popular in order to identify parameter vectors with
high corresponding model performance. The model performance is often assessed
by a purpose-oriented objective function. Practical experience suggests that in many
situations one single objective function cannot adequately describe the model’s abil-
ity to represent any aspect of the catchment’s behaviour. This is regardless whether10

the objective is aggregated of several criteria that measure different (possibly oppo-
site) aspects of the system behaviour. One strategy to circumvent this problem is
to define multiple objective functions and to apply a multi-objective optimisation algo-
rithm to identify the set of Pareto optimal or non-dominated solutions. One possible
approach to estimate the Pareto set effectively and efficiently is the particle swarm op-15

timisation (PSO). It has already been successfully applied in various other fields and
has been reported to show effective and efficient performance. Krauße and Cullmann
(2011b) presented a method entitled ROPEPSO which merges the strengths of PSO
and data depth measures in order to identify robust parameter vectors for hydrologi-
cal models. In this paper we present a multi-objective parameter estimation algorithm,20

entitled the Multi-Objective Robust Particle Swarm Parameter Estimation (MO-ROPE).
The algorithm is a further development of the previously mentioned single-objective
ROPEPSO approach. It applies a newly developed multi-objective particle swarm opti-
misation algorithm in order to identify non-dominated robust model parameter vectors.
Subsequently it samples robust parameter vectors by the application of data depth met-25

rics. In a preliminary assessment MO-PSO-GA is compared with other multi-objective
optimisation algorithms. In the frame of a real world case study MO-ROPE is applied
identifying robust parameter vectors of a distributed hydrological model with focus on
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flood events in a small, pre-alpine, and fast responding catchment in Switzerland. The
method is compared with existing robust parameter estimation methods.

1 Introduction

Hydrological models are simplified, conceptual representations of a part of the hydro-
logic cycle. They relate rainfall to streamflow on a continuous basis. Many of those5

models are driven by a vector of parameters that cannot be measured directly, but
must be determined through indirect methods. This is an important aspect of model
calibration. Efficient and effective parameter estimation techniques are a crucial factor
for the successful application of hydrological models. In the process of parameter esti-
mation the values of the model parameters are adjusted until the catchment behaviour10

is closely matched.
Traditionally, this calibration is performed manually adjusting the parameters while vi-

sually inspecting the agreement between observations and model predictions. For the
application of automatic approaches the calibration is formulated as an optimisation
problem. A purpose-specific objective function f quantifies the agreement between15

observations and simulation results. Many practical studies suggest that one single
objective function, no matter how carefully chosen, is often insufficient to represent all
characteristics of the system behaviour (Gupta et al., 1998; Cullmann, 2006; Gill et al.,
2006; Fenicia et al., 2007). For instance the mean absolute error of the discharge at
the catchment outlet might be a good indicator for the ability to represent the water20

balance, however it is likely to be inadequate to measure the model performance for
flood forecasts where a correct simulation of the peak flow value and timing is crucial.
Consequently, single-objective calibration approaches that provide one unique global
best parameter vector are in many cases not considered acceptable by experienced
hydrologists. The most elementary solution to circumvent this problem is to aggregate25

several objective functions. However, this approach involves a great deal of subjec-
tive judgment and neglects the global bests for individual objective functions. Another
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advanced option is a multi-objective view of the optimisation problem referring to the
concept of Pareto optimality (Gupta et al., 1998). A multi-objective optimisation algo-
rithm approximates the set of non-dominated, i.e. Pareto-optimal solutions with respect
to a set of given objectives. The Pareto-optimal set or Pareto set reflects the trade-offs
among all given objectives. Recently evolutionary algorithms, i.e. particle swarm opti-5

misation or genetic algorithms have found favour in order to approximate this set.
A major disadvantage of automatic calibration procedures which understand the

problem of model calibration just as an optimisation problem was studied by Bárdossy
and Singh (2008): due to the complex-shaped response surface the solution of the
optimisation problem can result in different near optimum parameter vectors that can10

lead to a very different performance on the validation data. The actual goal of a good
model calibration should not be to find parameter vectors which perform best for the
calibration period but to find parameter vectors which are robust. One possible ap-
proach to achieve this goal os the Robust Parameter Estimation approach that was
first provided by Bárdossy and Singh (2008). It applies data depth metrics in order to15

sample robust parameter vectors with respect to a set of identified parameter vectors
with good model performance. Recent studies (Bárdossy and Singh, 2008; Krauße
and Cullmann, 2011a,b) presented the success of several development steps of this
method. However, all ROPE approaches published so far just identify robust model
parameter vectors with respect to one single objective. The consideration of multiple20

objectives is just possible by aggregation.
In this paper we present a new method, entitled Multi-Objective Robust Parameter

Estimation (MO-ROPE) that synthesizes the advantages of both the multi-objective
view and robust parameter estimation. In order to quantify the uncertainty of the
parametrisation with respect to the given objectives, the method estimates a set of25

robust model parameter vectors applying a two-step approach. Within the first step,
an evolutionary algorithm that combines ideas of swarm intelligence and genetic al-
gorithms is used to approximate the Pareto-optimal set. In a second step parameter
vectors with high data depth (with respect to the Pareto set) are sampled assuming that

3696

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3693–3741, 2011

Robust
multi-objective

calibration strategies

T. Krauße et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

those parameter vectors are more robust than the complete Pareto set. The developed
approach is tested on synthetical data. The results are compared with existing multi-
objective calibration approaches. The real world case study shows the success of the
MO-ROPE method in the calibration of a distributed hydrological model focussing on
flood events in comparison with existing robust parameter estimation methods.5

2 Overview over existing calibration stratgies

The newly developed MO-ROPE synthesizes the concepts of multi-objective model
calibration and robust parameter estimation. Therefore we will briefly introduce both
concepts in this section.

2.1 Multi-objective model calibration10

Multi-objective model calibration estimates the considered parameters of a given model
by simultaneously optimising two or more conflicting objectives. The objectives may be
subject to certain constraints. This is done referring to the concept of Pareto optimality
or Pareto efficiency. A multi-objective optimisation problem can be stated as the min-
imisation of a set of objective functions which quantify the degree of match between15

the simulated and observed system behaviour. Table 3 gives an overview about differ-
ent objective functions used in this paper. For a d -dimensional calibration task with p
objectives the optimisation problem is defined as follows:

min
θ∈Θ

F (θ)=
{
f1(θ),f2(θ),···,fp(θ)

}
(1)

where θ= (θ1,···,θ2) is a d -dimensional vector in Rd .20

The optimisation task of is to identify decision vectors1 out of the feasible decision
space Θ that will minimise all objective functions in F simultaneously. However, a

1In the context of parameter estimation the decision vectors consist of the model parameters
to be estimated and are thus often entitled parameter vectors.

3697

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3693–3741, 2011

Robust
multi-objective

calibration strategies

T. Krauße et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

unique global minimum for all objective functions in F only exists for exceptional cases2.
Thus, a set of non-dominated decision vectors is to be estimated according to the
following definitions:

– a decision vector
→
u weakly dominates another vector

→
v if and only if ∀i ∈ {1,···,p} :

fi
→
(u)≤ fi

→
(v ). This is denoted by

→
u�

→
v .5

– a decision vector
→
u dominates another vector

→
v if and only if

→
u�

→
v and ∃i ∈

{1,···,p} : fi
→
(u)< fi (

→
v ). This is denoted by

→
u ≺

→
v .

– a decision vector
→
u is called Pareto optimal or non-dominated if and only if @

→
w∈

Θ :
→
w≺

→
u

The set of Pareto optimal solutions is denoted as the Pareto optimal set P̃ and the10

image of P̃ under the mapping F is called Pareto front. Often both terms are used syn-
onymously. Consider that for objectives that have to be maximised either the negative
of the objective has to be minimised or the operators < and≤ have to be substituted
by > and ≥ in the definition above. The principle is illustrated in Fig. 1 with the help
of a multi-objective optimisation problem with two objectives. Hence, solving a multi-15

objective optimisation problem is to find the Pareto optimal solutions in the feasible
decision space Θ.

The Pareto set characterises the uncertainty in the identification of a unique global
best parameter vector with respect to the chosen objectives. Additionally it provides
useful information about the limitations of the model. Unlike other single-objective un-20

certainty approaches, e.g. GLUE, BATEA, and SCEM-UA (Beven and Binley, 1992;
Thyer et al., 2007; Vrugt et al., 2003b) a multi-objective view does not require arbitrary

2Consider that in such case multi-objective optimisation is not necessary, because the prob-
lem can reformulated as a single-objective optimisation problem with the same solution.
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uncertainty thresholds, e.g. the 5th and 9th percentile. “Any fuzziness in the specifica-
tion of the Pareto parameter spaces in the multi-objective approach arises from only
two factors: (a) subjectivity in the selection of the measures in F and (b) the statistical
uncertainty in the computation of each measure arising from sampling considerations”
(s. Gupta et al., 1998, p. 756).5

Recently evolutionary algorithms have been reported to successfully approximate
the Pareto set for complicated non-linear problems (e.g. Zitzler et al., 2008). That is why
they found favour in order to solve multi-objective calibration problems in many fields
of study, including computational chemistry, bioinformatics, economics, computational
science, and environmental sciences (e.g. Madsen, 2000; Gill et al., 2006; Tsou, 2008).10

2.2 Robust parameter estimation

The application of automatic calibration procedures for model parameter estimation
often completely neglects possible uncertainties in the observations used to quantify
the matching of simulated values and measurements. Bárdossy and Singh (2008)
studied this problem: due to the complex-shaped response surface and the erroneous15

observations the solution of the optimisation problem can lead to very different near
optimum parameter vectors that correspond to a much different model performance on
the validation data. The actual goal of a good model calibration should not be to find
parameter vectors which perform best for the calibration period but to find parameter
vectors which:20

– lead to good model performance over the selected time period;

– lead to a hydrologically reasonable representation of the corresponding pro-
cesses;

– are not sensitive: small changes of the parameters should not lead to very differ-
ent results;25
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– are transferable: they perform well for other time periods and might also perform
well on other catchments.

According to Bárdossy and Singh (2008) we call such parameter vectors robust.
There are two possibilities to improve existing calibration approaches in order to identify
robust parameter vectors. One starting point which recently attracted rising scientific5

interest is a more intelligent selection of the calibration data (s. Wagener and Wheater,
2002; Wagener and Gupta, 2005; Thyer et al., 2006), another one is the development
of advanced methods for the identification of parsimonious model parameters. An ex-
ample is the Robust Parameter Estimation approach (ROPE). It was first presented by
Bárdossy and Singh (2008). The ROPE approach is based on the application of the10

principle of data depth in order to sample robust parameter vectors. Data depth is a
statistical method used for multivariate data analysis. A specific data depth function
assigns a numeric value to a given point which corresponds to its centrality with re-
spect to a set of points. This approach provides center-outward orderings of points in
Euclidean space of any dimension and provides the possibility of a new non-parametric15

multivariate statistical analysis in which no distributional assumptions are needed. Re-
cent studies of computational geometry and multivariate statistics (e.g. Liu et al., 2006;
Bremner et al., 2008) showed that members with high depth with respect to the set, are
more robust in order to represent the underlying distribution than whole set. The deep
points can be estimated by the concept of data depth, which has recently attracted a lot20

of research interest in multivariate statistics and robust modelling (e.g. Cramer, 2003;
Liu et al., 2006). Data depth provides the ability to analyse, quantify and visualise
data sets without making prior assumptions about the probability distribution they are
sampled from. Most proposed metrics used in data depth functions are inherently ge-
ometric, with a numeric value assigned to each data point that represents its centrality25

within the given data set. The depth median, the point of maximal depth, is the depth
based estimator for the center of the data set. Depth contours can be used to visualize
and quantify the data. The concept of data depth is illustrated in Fig. 2 by a small
2-dimensional example. For a random point set in R2 the data depth was computed for
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each point of the set with respect to the point set itself.
Using the example of the calibration of a hydrological model Bárdossy and Singh

(2008) showed that parameter vectors with high data depth (with respect to a set of
parameter vectors with good model performance) are on average more robust than
such with low depth. In general ROPE consists of two steps:5

1. In a first step a set of model parameter vectors with a reasonable good model
performance X ∗ is identified. The estimated parameter vectors achieve the best
possible performance with respect to the given objectives and calibration data.
Thus, they are from now on called the good parameter vectors.

2. Afterwards a set of parameter vectors Y with high data depth with respect to the10

set of good parameter vectors is generated under the assumption that those pa-
rameter vectors are more robust than the complete set of good parameter vectors.

As mentioned above, the outcome of recent studies with further developed algo-
rithms applying the ROPE principle showed that this concept can be very useful for
the estimation of robust hydrological model parameters. For further details refer to15

the studies provided by Bárdossy and Singh (2008); Krauße and Cullmann (2011a,b).
They apply ROPE to the calibration of hydrological models with daily and hourly time
step.

3 Multi-objective robust parameter estimation

We propose to synthesize the strengths of multi-objective optimisation and robust pa-20

rameter estimation with data depth functions in a new algorithm, entitled Multi-Objective
Robust Parameter Estimation by Particle Swarm Optimisation (MO-ROPE). In this sec-
tion we will introduce the newly developed MO-ROPE approach. It synthesizes the ad-
vantages of a multi-objective view and the robust parameter estimation. The approach
applies a newly developed evolutionary algorithm in order to estimate the Pareto set.25
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In a second step a set of parameter vectors with high data depth with respect to the
Pareto set is sampled by an algorithm called GenDeep. The introduction of the al-
gorithm is rounded out by two synthetical benchmarks that have been widely used to
assess the effectiveness and efficiency of multi-objective optimisation algorithms.

3.1 Multi-objective optimisation by particle swarm optimisation5

4 Kraue et al.: Robust multi-objective calibration strategies

As mentioned above, the outcome of recent studies with
further developed algorithms applying the ROPE principle
showed that this concept can be very useful for the estimation
of robust hydrological model parameters. For further details
refer to the studies provided by???. They apply ROPE to
the calibration of hydrological models with daily and hourly
time step.

3 Multi-objective robust parameter estimation

We propose to synthesize the strengths of multi-objective op-
timisation and robust parameter estimation with data depth
functions in a new algorithm, entitled Multi-Objective Ro-
bust Parameter Estimation by Particle Swarm Optimisation
(MO-ROPE). In this section we will introduce the newly de-
veloped MO-ROPE approach. It synthesizes the advantages
of a multi-objective view and the robust parameter estima-
tion. The approach applies a newly developed evolutionary
algorithm in order to estimate the Pareto set. In a second step
a set of parameter vectors with high data depth with respect
to the Pareto set is sampled by an algorithm called GenDeep.
The introduction of the algorithm is rounded out by two syn-
thetical benchmarks that have been widely used to assess the
effectiveness and efficiency of multi-objective optimisation
algorithms.

3.1 Multi-objective optimisation by particle swarm op-
timisation

Recently several evolutionary search strategies, e.g. genetic
algorithms (GA) and particle swarm optimisation (PSO) be-
came popular to approximate the Pareto set. Both are popu-
lation based algorithms that have proven to be successful in
solving this task for an extensive variety of problems even in
high dimensions effectively and efficiently. We implemented
a hybrid multi-objective search strategy based on both ap-
proaches with the goal to exploit their strengths, and to min-
imise their weaknesses. The developed approach is entitled
Multi-Objective optimisation by Particle Swarm Optimisa-
tion and Genetic Algorithm (MO-PSO-GA).

A pseudocode listing of the algorithm is given in Algo-
rithm 3.1. For the swarming of the particles we modified
the approach provided by?. In difference to? the (individ-
ual) global best for each particle is not the closest particle
of the so far approximated Pareto optimal setÃ, but a ran-
dom member ofÃ. Furthermore each particlei has a local
bestyi . The local best is updated by the current positionxi
if it weakly dominates all so far found positions of the par-
ticle. Additionally we modified the algorithm according to
the ideas provided by?. They introduced a hybrid between
a genetic algorithm (GA) and PSO. The algorithm behaves
as a normal PSO algorithm besides an additional parameter,
the breeding ratioψ . This parameter determines the propor-
tion of the population which are not moved according to PSO

Algorithm 3.1 MO-PSO-GA

1: initialise the non-dominated front:̃A←∅
2: for all particlesi do
3: initialise position:xi←U [xlb,xub],
4: velocityvi←0,
5: local bestyi← xi
6: end for

// Iteration loop
7: while stopping criteria not metdo
8: for all particlesi do
9: computeF(xi)= [f1(xi),··· ,fp(xi)]

10: end for
// Estimate Pareto set

11: for all particlesi do
12: if isempty(Ã) then
13: Ã← xi
14: else if∃u∈ Ã,where:u � xi then
15: ∀u∈ Ã,where:xi ≺u do: Ã← Ã\u

16: Ã← Ã∪xi
17: else
18: do nothing toÃ
19: end if
20: if xi � yi then
21: yi← xi
22: end if
23: end for

// GA
24: nψ←ψ ·#{particles}
25: discard the worstnψ particles from the population
26: initialise the genetic offspring:oga←∅

27: for i=1
nψ
2 do

28: select a pair{x1,x2} from the population by tournament
selection

29: apply the VPAC operator to generate new offspring
{x1o ,x2o }←VPAC({x1,x2})

30: oga← oga ∪ {x1o ,x2o }

31: end for
// PSO

32: for all particlesi do
33: gi← random(Ã)

// update velocity and position
34: vi(t+1)←ω ·vi(t)+ φ1 ·R1 · (gi(t)−xi(t))+ φ2 ·R2 ·

(yi(t)−xi(t))

35: xi(t+1)= xi(t)+vi(t+1)
36: end for

// merge the new population with genetic offspring
37: particles← particles∪ oga
38: end while

but will undergo breeding in the current generation. First of
all the worstψ ·n particles are discarded, wheren denotes
the population size. Afterwards, candidates for breeding are
nominated from the remaining population by tournament se-
lection and recombined by a so called Velocity Propelled Av-
eraged Crossover (VPAC) operator. This operator was intro-
duced by?. Its goal is to create two child particles whose po-
sition is between its parents’ position, but accelerated away

Hydrol. Earth Syst. Sci., 15, 1–5, 2011 www.hydrol-earth-syst-sci.net/15/1/2011/
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4 Kraue et al.: Robust multi-objective calibration strategies

As mentioned above, the outcome of recent studies with
further developed algorithms applying the ROPE principle
showed that this concept can be very useful for the estimation
of robust hydrological model parameters. For further details
refer to the studies provided by???. They apply ROPE to
the calibration of hydrological models with daily and hourly
time step.

3 Multi-objective robust parameter estimation

We propose to synthesize the strengths of multi-objective op-
timisation and robust parameter estimation with data depth
functions in a new algorithm, entitled Multi-Objective Ro-
bust Parameter Estimation by Particle Swarm Optimisation
(MO-ROPE). In this section we will introduce the newly de-
veloped MO-ROPE approach. It synthesizes the advantages
of a multi-objective view and the robust parameter estima-
tion. The approach applies a newly developed evolutionary
algorithm in order to estimate the Pareto set. In a second step
a set of parameter vectors with high data depth with respect
to the Pareto set is sampled by an algorithm called GenDeep.
The introduction of the algorithm is rounded out by two syn-
thetical benchmarks that have been widely used to assess the
effectiveness and efficiency of multi-objective optimisation
algorithms.

3.1 Multi-objective optimisation by particle swarm op-
timisation

Recently several evolutionary search strategies, e.g. genetic
algorithms (GA) and particle swarm optimisation (PSO) be-
came popular to approximate the Pareto set. Both are popu-
lation based algorithms that have proven to be successful in
solving this task for an extensive variety of problems even in
high dimensions effectively and efficiently. We implemented
a hybrid multi-objective search strategy based on both ap-
proaches with the goal to exploit their strengths, and to min-
imise their weaknesses. The developed approach is entitled
Multi-Objective optimisation by Particle Swarm Optimisa-
tion and Genetic Algorithm (MO-PSO-GA).

A pseudocode listing of the algorithm is given in Algo-
rithm 3.1. For the swarming of the particles we modified
the approach provided by?. In difference to? the (individ-
ual) global best for each particle is not the closest particle
of the so far approximated Pareto optimal setÃ, but a ran-
dom member ofÃ. Furthermore each particlei has a local
bestyi . The local best is updated by the current positionxi
if it weakly dominates all so far found positions of the par-
ticle. Additionally we modified the algorithm according to
the ideas provided by?. They introduced a hybrid between
a genetic algorithm (GA) and PSO. The algorithm behaves
as a normal PSO algorithm besides an additional parameter,
the breeding ratioψ . This parameter determines the propor-
tion of the population which are not moved according to PSO

Algorithm 3.1 MO-PSO-GA

1: initialise the non-dominated front:̃A←∅
2: for all particlesi do
3: initialise position:xi←U [xlb,xub],
4: velocityvi←0,
5: local bestyi← xi
6: end for

// Iteration loop
7: while stopping criteria not metdo
8: for all particlesi do
9: computeF(xi)= [f1(xi),··· ,fp(xi)]

10: end for
// Estimate Pareto set

11: for all particlesi do
12: if isempty(Ã) then
13: Ã← xi
14: else if∃u∈ Ã,where:u � xi then
15: ∀u∈ Ã,where:xi ≺u do: Ã← Ã\u

16: Ã← Ã∪xi
17: else
18: do nothing toÃ
19: end if
20: if xi � yi then
21: yi← xi
22: end if
23: end for

// GA
24: nψ←ψ ·#{particles}
25: discard the worstnψ particles from the population
26: initialise the genetic offspring:oga←∅

27: for i=1
nψ
2 do

28: select a pair{x1,x2} from the population by tournament
selection

29: apply the VPAC operator to generate new offspring
{x1o ,x2o }←VPAC({x1,x2})

30: oga← oga ∪ {x1o ,x2o }

31: end for
// PSO

32: for all particlesi do
33: gi← random(Ã)

// update velocity and position
34: vi(t+1)←ω ·vi(t)+ φ1 ·R1 · (gi(t)−xi(t))+ φ2 ·R2 ·

(yi(t)−xi(t))

35: xi(t+1)= xi(t)+vi(t+1)
36: end for

// merge the new population with genetic offspring
37: particles← particles∪ oga
38: end while

but will undergo breeding in the current generation. First of
all the worstψ ·n particles are discarded, wheren denotes
the population size. Afterwards, candidates for breeding are
nominated from the remaining population by tournament se-
lection and recombined by a so called Velocity Propelled Av-
eraged Crossover (VPAC) operator. This operator was intro-
duced by?. Its goal is to create two child particles whose po-
sition is between its parents’ position, but accelerated away

Hydrol. Earth Syst. Sci., 15, 1–5, 2011 www.hydrol-earth-syst-sci.net/15/1/2011/

Recently several evolutionary search strategies, e.g. genetic algorithms (GA) and
particle swarm optimisation (PSO) became popular to approximate the Pareto set. Both
are population based algorithms that have proven to be successful in solving this task
for an extensive variety of problems even in high dimensions effectively and efficiently.
We implemented a hybrid multi-objective search strategy based on both approaches5

with the goal to exploit their strengths, and to minimise their weaknesses. The devel-
oped approach is entitled Multi-Objective optimisation by Particle Swarm Optimisation
and Genetic Algorithm (MO-PSO-GA).

A pseudocode listing of the algorithm is given in Algorithm 3.1. For the swarming of
the particles we modified the approach provided by Tsou (2008). In difference to Gill10

et al. (2006) the (individual) global best for each particle is not the closest particle of
the so far approximated Pareto optimal set Ã, but a random member of Ã. Furthermore
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each particle i has a local best
→
y i . The local best is updated by the current position

→
x i

if it weakly dominates all so far found positions of the particle. Additionally we modified
the algorithm according to the ideas provided by Settles and Soule (2005). They intro-
duced a hybrid between a genetic algorithm (GA) and PSO. The algorithm behaves as
a normal PSO algorithm besides an additional parameter, the breeding ratio ψ . This5

parameter determines the proportion of the population which are not moved according
to PSO but will undergo breeding in the current generation. First of all the worst ψ ·n
particles are discarded, where n denotes the population size. Afterwards, candidates
for breeding are nominated from the remaining population by tournament selection
and recombined by a so called Velocity Propelled Averaged Crossover (VPAC) opera-10

tor. This operator was introduced by Settles and Soule (2005). Its goal is to create two
child particles whose position is between its parents’ position, but accelerated away
from their current direction (negative velocity) in order to increase diversity in the pop-
ulation. After a given number of iterations Ã holds a set of parameter vectors that
represent the Pareto set of the given multi-optimisation problem.15

3.2 Synthesizing multi-objective optimisation and robust parameter estimation

Algorithm 3.2 MO-ROPE
1: Execute the multi-objective particle swarm based MO-PSO-GA procedure to estimate an

approximation of the Pareto front of the problem (Ã).
2: Sample parameter vectors Ãd with high data depth w.r.t. Ã by the GenDeep strategy pro-

vided in Krauße and Cullmann (2011a)
3: return Y

The set of non-dominated solutions Ã estimated by MO-PSO-GA3 is the initial point
of the second algorithmic step the sampling of robust parameter vectors. The GenDeep

3Consider that MO-PSO-GA can be substituted by any suitable multi-objective optimisation
algorithm.
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function presented in Krauße and Cullmann (2011a) samples a set of parameter vec-
tors Ãd with high data depth with respect to Ã.

The used data depth function is the halfspace depth or Tukey depth, first introduced
by Tukey (1975). According to Donoho and Gasko (1992) the halfspace depth of an
arbitrary point θ= (θ1,...,θd )∈Rd with respect to a d -dimensional data set Z is defined5

as the smallest number of data points in any closed halfspace with boundary through
θ. This is also called the Tukey or location depth, and it can be written as:

hdepth(θ |Z) := min∣∣∣∣∣∣→u∣∣∣∣∣∣=1
#{i ,

→
u
>→
x i≥

→
u
>
θ} (2)

where u ranges over all vectors in Rd with
∣∣∣∣∣∣→u∣∣∣∣∣∣=1.

Very often the halfspace depth is normalised by dividing the hdepth value by the10

number of points in the set Z :

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
(3)

A pseudocode listing of the proposed MO-ROPE is provided in Algorithm 3.2. The
developed solution addresses some of the drawbacks of existing multi-objective and
robust single-objective calibration procedures. It provides a good possibility for the15

identification of robust model parameter vectors with respect to multiple calibration ob-
jectives. The algorithm was implemented in MATLABand C++and is embedded in a
robust parameter estimation framework which comprises other published robust pa-
rameter estimation approaches. The framework is open source and available from the
author.20

3.3 Synthetic test problems

The published results of single-objective robust parameter estimation approaches have
shown that the quality of the set of good parameter vectors plays an important role
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for the robustness of the estimated model parameter vectors (Krauße and Cullmann,
2011a,b). This is why an effective estimation of the non-dominated solutions in the
first algorithmic step is an important prerequisite for a successful application of a multi-
objective robust parameter estimation approach. Thus, in a preliminary case study
we applied the MO-PSO-GA algorithm in order to approximate the Pareto set for sev-5

eral synthetic problems with analytical solutions, in order to compare our MO-PSO-GA
algorithm with already published approaches for multi-objective optimisation.

3.3.1 Test function I

For a first comparison of MO-PSO-GA with other approaches we selected a benchmark
that was already chosen by previous publications dealing with multi-objective particle10

swarm optimisation algorithms (e.g. Coello et al., 2004; Gill et al., 2006). The bench-
mark, we refer to as test function I, was first used by Kita et al. (1996). The problem is
to maximise the following function:

max
(x,y)∈Θ

F =
{
f1(x,y),f2(x,y)

}
(4)

where15

f1(x,y)=−x2+y, f2(x,y)=
x
2
+y+1 (5)

subject to

0≥ x
6
+y−6.5, 0≥ x

2
+y−7.5,

0≥5x+y−30, x,y ≥0

in the range 0≤x,y ≤7.20

Following the settings in Coello et al. (2004) and Gill et al. (2006). we ran the MO-
PSO-GA algorithm with the same population size (30) and the same number of function
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evaluations (5000). The true front of test function I and the non-dominated front esti-
mated by MO-PSO-GA are shown in Fig. 3. It is obvious that the true front is approxi-
mated well and all sections of the front are uniformly covered. For an objective compar-
ison of the approximated front against the true front we calculated several performance
metrics and compared them with a published overview according to Gill et al. (2006).5

We computed the generational distance (GD) metric introduced by van Veldhuizen and
Lamont (1998) and the spacing metric (SP) introduced by Schott (1995). The GD is a
measure of the distance between the elements of the current non-dominated set and
the true Pareto front, whereas the SP measures the mutual distance between those
elements. Lower values of GD and SP denote a better approximation and a more10

uniform spread, respectively, with zero being the optimum. An overview of the perfor-
mance metrics for the estimates of test function I computed by several multi-objective
optimisation algorithms is given in Table 1. The nearly perfect GD value of 0.0006 in-
dicates that the MO-PSO-GA estimates almost perfectly approximate the true Pareto
front of test function I. Furthermore the SP value of 0.062 shows that the solutions are15

well spread all over the complete estimated front. The given results were computed by
averaging the performance metrics for 25 individual algorithm runs. The particle swarm
based MOPSO presented by Gill et al. (2006) and all other approaches compared in
that paper are outperformed by the MO-PSO-GA.

3.3.2 Test function II20

Additionally we applied the algorithm to another synthetical multi-objective test prob-
lem, which was used as a benchmark in Vrugt et al. (2003a) and Gill et al. (2006).
We refer to this test problem as test function II. The problem is to minimise three two
dimensional functions as follows:

min
θ∈Θ

F (θ)=
{
f1,f2,f3

}
(6)25
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where

f1(θ1,θ2)=θ1
2+θ2

2

f2(θ1,θ2)= (θ1−1)2+θ2
2

f3(θ1,θ2)=θ1
2+ (θ2−1)2

The Pareto solution set corresponding to Eq. (6) consists of a triangular-shaped area5

in the parameter space, having the corner points (0,0), (0,1) and (1,0) for θ1 and θ2,
respectively.

Referring to the original publication of Vrugt et al. (2003a) we applied MO-PSO-GA
to estimate an approximation of the actual Pareto set of this problem. Just like Vrugt
et al. (2003a) we set the maximum number of function evaluations to 5000. We set10

the population size to values of 10, 20, 50, and 100 respectively. Figure 5 provides
scatter plots of the corresponding results. It is obvious that MO-PSO-GA performs well
with uniform approximations of the true front irrespective of the specified population
size. Consider that the higher population sizes do not forcefully yield better results,
because the maximum number of function evaluations also limits the maximum number15

of iteration. Hence, for a maximum number of function evaluations of 5000 the run with
a population size of 50 was iterated 100 times whereas the run with population size
10 was iterated 500 times. These results for test function II are very comparable to
those of the MOSCEM provided by Vrugt et al. (2003a) and another multi-objective
optimisation algorithm based on swarm intelligence presented by Gill et al. (2006). A20

detailed visual comparison confirms that the non-dominated front estimated by MO-
PSO-GA is less clustered and provides a fairly better approximation of the true Pareto
front. We repeated the runs once again but set the number of generations to 50 for all
population sizes. The results are given in Fig. 5. Already the run with population size
20 and a corresponding number of function evaluations of just 1000 provides better25

results than the runs with MOSCEM and MO-PSO presented by Vrugt et al. (2003a)
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and Gill et al. (2006) respectively. This underlines the efficiency of the MO-PSO-GA
algorithm.

Even though these results are quite convincing, Wolpert (1997) showed that there
is “no free lunch”, i.e. it is impossible to construct one single (parameter) search algo-
rithm that will always outperform any other algorithm. In the last years some revolution-5

ary approaches have been developed to benefit from the strengths of multiple search
strategies, e.g. the multi-algorithm, genetically adaptive multi-objective method (AMAL-
GAM) presented by Vrugt and Robinson (2007). Consider that it is easily possible to
integrate the developed search algorithm into such a multi-algorithm framework.

4 Calibrating WaSiM with MO-ROPE focussing on flood forecasting10

As the second application, the complete MO-ROPE approach is tested on the calibra-
tion of the distributed hydrological model WaSiM-ETH/6.4 model (in the further referred
to as WaSiM). The model was introduced by Schulla (1997). WaSiM transforms rain-
fall into runoff according to the scheme shown in Fig. 6. It exemplary shows that the
soil water compartments receive infiltration which is computed by a modified approach15

according to Green and Ampt (1911). This module is also used to determine the direct
runoff Qd and the interflow Qifl in the model. Qd is then routed via a flow-time grid and
finally projected cell-wise to the catchment outlet by means of a simple bucket type
function. The recession coefficient of this function is the model parameter kd . The soil
water movement through the different soil layers is modeled by means of the discrete20

form of the Richards-equation.
The WaSiM model was calibrated for the Rietholzbach catchment (3.18 km2) a small

prealpine catchment located in the north-east of Switzerland. Figure 7 provides a 3-
D-view of the catchment area. A significant number of studies have been conducted
in this basin. For further information refer to Gurtz et al. (1999); Zappa (2002) and25

the website http://www.iac.ethz.ch/research/rietholzbach. In this case study WaSiM
will be calibrated for the simulation of extreme discharges. Out of a time series of
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27 yr (1981–2008) of hourly measurements (precipitation, temperature, wind speed,
global radiation, and streamflow), 24 significant flood events were identified. For further
details and a more comprehensive overview refer to Krauße and Cullmann (2011a).
Five flood events were used for calibration. The estimated parameter vectors were
validated on 19 other flood events.5

Preliminary sensitivity analyses (Cullmann, 2006; Seifert, 2010) showed that both
the uncertainty in the identification of the soil hydraulic parameters and three further
conceptual model parameters have a tremendous influence on the simulation results.
These parameters were thus considered for calibration (Table 2). The simultaneous
calibration of both soil hydraulic and conceptual model parameters was done following10

an approach provided in Grundmann (2010) that was already successfully applied in
several other case studies (e.g. Krauße and Cullmann, 2011b). An overview over all
possible objectives referred to in the following case studies is provied in Table 3.

4.1 Comparing single and multi-objective ROPE algorithms

In a first case study we calibrated WaSiM with the MO-ROPE algorithm in terms of15

two objective functions: rPD and NS. The number of function evaluations was set to
5000. Additionally we applied the single-objective robust parameter estimation algo-
rithm ROPEPSO to this problem using rPD, NS and their aggregate FloodSkill as ob-
jective functions. The distributions of the estimated parameter vectors and some basic
statistical properties, i.e. the mean value µ and the standard deviation σ, are pro-20

vided in Table 5. In general the variance of the estimated distributions is higher for
the multi-objective MO-ROPE approach than for the single-objective ROPEPSO. Within
the single-objective calibration runs the variance of the estimated distributions for the
model parameters is in general the higher the more global the considered objective. For
instance the variance of the ROPEPSO NS run estimates tends to be higher than those25

of the ROPEPSO rPD estimates. Furthermore there is an obviously strong dependence
of the parameters kd and krec on the used criterion. The more a correct representation
of the observed peak flow value is measured by the used objective criterion, the lower
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the value of kd and the higher the value of krec. In general these results are reason-
able and consistent with the model structure and the corresponding understanding of
the hydrological system. Lower values of kd increase the dynamics of the generated
direct runoff, a higher value of krec decreases the effective saturated conductivity of
deeper soil layers. This leads to a faster generation of direct runoff. However, within5

the basin direct runoff on the surface has hardly ever been observed, even not during
large and intensive convective storm events. Thus these results are already a subtle
hint to shortcomings in the model structure.

This assumption is supported by the achieved calibration performance for the multi-
objective run. The trade-off surface for both rPD and NS on the basis of all parameter10

vectors evaluated by the MO-PSO-GA and the estimated approximation of the Pareto
optimal set Ã is given in Fig. 8. The evaluation of the model performances corre-
sponding to the estimated parameter vectors show a clear tradeoff between both used
objectives. That means that the best parameter vectors with respect to the peak flow
value cannot represent the global behaviour of the catchment for flood events equally15

well. The advantage of the depth based sampling gets obvious from the plot given
in Fig. 9. The sampled deep parameter vectors Ãd (with respect to the approximated
Pareto optimal set Ã) show a better performance on the validation data. The deep
parameter vectors are a good approximation of the (theoretical) Pareto front in the ob-
jective space based on the validation data. The tails of the Pareto front estimated in20

the calibration are not required. For example the best parameter vectors with respect
to rPD on the calibration data do not have a better rPD in the validation than the sam-
pled deep parameter vectors. However those vectors have a significantly worse NS.
This shows that the deep parameter vectors are better transferable to other periods
and events and thus more robust. The advantage of the depth based sampling gets25

even more obvious from the plots provided in Fig. 10. It visualises the dependency
between the model performance of a sampled parameter vector on the validation data
in terms of the FloodSkill criterion4 and its data depth with respect to the approximated

4The FloodSkill criterion is a compromise between rPD and NS (see Table 3 at the beginning
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Pareto optimal set. The parameter vectors with high data depth show a on average
better model performance (lower FloodSkill values) with less variance than the hull of
the Pareto optimal set Ãh. This implies that parameter vectors with low data depth are
more likely to be an outlier with bad model performance. The estimated results confirm
the underlying assumption of the ROPE approach for multi-objective calibration tasks.5

The model performances for multi-objective calibration were compared with the re-
sults of the single-objective robust parameter estimation runs. They are provided in
Fig. 11. It is evident that due to the tradeoff the multi-objective calibration makes sense.
It provides the best solution with respect to both objectives rPD and NS. The sets of
robust parameter vectors YrPD and YNS estimated by ROPEPSO considering just the rPD10

or NS show indeed a good validation performance on those criteria. However the model
performance of the other criterion not considered for calibration is not sufficient. Also
the single-objective solutions for the aggregated FloodSkill criterion YFloodSkill overem-
phasizes the NS and provides just slightly better results in terms of the peak flow
deviation in comparison to the single-objective calibration considering just the NS. The15

corresponding hydrographs of three validation events and the corresponding parameter
and model uncertainties for both the solultion Ãd estimated by MO-ROPE and YFloodSkill
estimated by ROPEPSO are provided in Fig. 12. The complete model uncertainty was
computed by two normal distributions fitted on the positive and negative discharge er-
rors, transformed with the normal quantile transformation (NQT) (Krzysztofowicz, 1997)20

according to a method presented by Engeland et al. (2010). Contrary to Engeland et al.
(2010) we considered observations with a discharge greater or equal 0.33 mm−1h to
account for the focus on the correct simulation of higher flow values. The hydrographs
confirm the results of the previous analysis of the model performances. The peak flow
values are better represented by the parameter vectors estimated by the multi-objective25

calibration. The confidence band of the parameter uncertainty is slightly smaller for the
multi-objective calibration than for the single-objective calibration. However, the com-
plete model uncertainty is approximately the same for both approaches. That is due to

of this section)
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the discussed shortcomings of the model structure and other neglected uncertainties
in the observations.

4.1.1 Using soil moisture information and multi-objective parameter estimation
to improve model calibration

In another case study we calibrated WaSiM again. However, this time we also ac-5

counted for the provided information of the soil moisture in the catchment for model
calibration. The Rietholzbach catchment has been intensively monitored as a scientific
research catchment since 1975. Lysimeter measurements deliver the necessary soil
moisture information on hourly basis. On average the measurements are representa-
tive for the whole catchment for the long term. This is due to the small size of the basin,10

the location of the lysimeter station in the centre of the basin situated on grassland
which is the major land use in the catchment. Unfortunately there are no significant
studies for the catchment that examine the soil moisture dynamics for storm events in
a more distributed way. We assume that a good approximation of the catchment be-
haviour (when focussing on flood events) requires a correct match of the dynamics of15

the soil moisture but no exact approximation of the measured water contents. Hence,
we chose the correlation between observed and simulated as an additional objective.
The underlying idea is that parameter vectors that do not only correspond to a good
representation of catchment’s behaviour with respect to the measured discharge but
also the mean soil moisture dynamics are potentially better transferable to other flood20

events and can be used for extrapolation, i.e. they are potentially more robust.
Again we calibrated WaSiM with the MO-ROPE algorithm in terms of the two ob-

jective functions already used in the previous case study (rPD, NS) and the correlation
between the measured and simulated soil moisture in the upper 50 cm of the soil layer.
The assignment of calibration and validation events was changed due to some gaps25

in the provided soil moisture measurements. All other settings remained the same. In
two runs robust parameter vectors were estimated in terms of all three objectives and
just the rPD and NS. The distributions of the estimated parameter vectors are provided
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in Table 5. For a better comparison the results of the previous case study with just 2
objectives considered are given as well. Considering three objectives the distribution
of the most sensitive parameter kd tends to smaller values than for the calibration run
considering just the objectives rPD and NS. The distribution of the parameter ki has ap-
proximately the same mean and variance but a significantly larger negative skewness.5

The mean value of the parameter dr is approximately the same with a significantly
lower variance. The same holds for the soil parameters βSL and βSiL. An obvious
difference can be observed in the distribution of the parameter krec. The mean value
is significantly lower with a higher variance. That means that the effective saturated
conductivity for deeper soil layers decreases faster, i.e. the soils in the model have on10

average a lower saturated conductivity.
The corresponding model performances on the validation data for both the 2-

objective calibration and the 3-objective calibration considering the soil moisture dy-
namics are provided in Fig. 14. The scatter plots show the rPD and the NS for the
approximated Pareto-optimal set Ã and the subsequently sampled robust parameter15

vectors Ãd. The boxplot below provides the correlation between observed and simu-
lated soil moisture for the robust sets Ãd. The improvements in terms of the correlation
between the observed and simulated soil moisture are negligibly small for the validation
period. An increase of the correlation coefficient of just one or two hundredths is no
significant improvement. However, the validation performance in terms of the criteria20

assessing a good representation of the observed runoff is significantly worse, partic-
ularly for the rPD. The rPD on the validation events is approximately in the range of
0.25–0.40 instead of 0.19–0.34 for the 2-objective calibration, the NS is in the range
of 0.41–0.64 instead of 0.34–0.67. Hence, here the soil moisture dynamics is no suit-
able additional criterion in order to improve the calibration results. This result is rather25

surprising.
One possible explanation might be the shortcomings in the model structure, already

discussed in the previous case study. The soils of the Rietholzbach catchment are
characterised by many macropores and some smaller drainages. This induces the
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generation of preferential flow which is a very fast runoff component. However, the
water movement in the unsaturated zone is described by the model in terms of the
Richards equation that account just for the matrix flow in the soil but cannot repre-
sent the preferential flow component natively. Thus, the fast runoff components are
supposed to be modeled by the direct runoff. The identified parameter vectors pro-5

vide a good representation of the catchment’s behaviour in terms of the discharge at
the outlet. However, the additional criterion which assesses a reasonable represen-
tation of the observed soil moisture dynamics is rather counterproductive. This result
is supported by some further evaluation of the previous case study. Figure 15 pro-
vides information about the dependance between soil moisture correlation rΘ and data10

depth with respect to the Pareto set Ã for both Ã and the accordingly sampled deep
parameter vectors Ãd. The hull and the deep vectors are indicated by blue and red
dots respectively. It is obvious that deep parameter vectors in Ãd which are robust in
terms of rPD and NS provide no better correlation between observed and simulated
soil moisture. Another possible explanation for the worse calibration results are the15

observations themselves. Due to the potentially very heterogeneous conditions in the
unsaturated zone, one single lysimeter might notwithstanding the above-mentioned
considerations not be significant for the short-term soil moisture dynamics in the whole
catchment. Other case studies on a larger scale with a lot of measurements showed
that the soil moisture can be an appropriate additional calibration objective, also for20

flood events (e.g Norbiato et al., 2008).
This underlines that robust parameter estimation can identify the most robust solu-

tions within the given constraints. However, a good selection of appropriate calibration
objectives and a suitable model structure are as important as a reliable and robust
model parametrisation.25
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5 Discussion and conclusions

– This paper presents a multi-objective parameter estimation approach which is
well suited for solving multi-criterial parameter estimation problems. The devel-
oped approach, entitled Multi-Objective Robust Parameter Estimation by Particle
Swarm Optimisation and Genetic Algorithms (MO-ROPE), merges the strength of5

evolutionary multi-objective optimisation algorithms and depth based parameter
sampling. MO-ROPE consists of two sub-components that are applied subse-
quently. A newly developed evolutionary optimisation algorithm (MO-PSO-GA)
employs the concepts of particle swarm optimisation and genetic programming in
order to effectively estimate the Pareto-optimal set. As a kind of post-processor10

we apply the concept of data depth to sample robust model parameter vectors
with respect of the identified Pareto-optimal set. We study the efficiency and ef-
fectiveness of the developed solution by means of two synthetical benchmarks
and the calibration of a process-oriented hydrological model.

– Two synthetical benchmarks assess the efficiency and effectiveness of the newly15

developed MO-PSO-GA algorithm in order to estimate Pareto-optimal set for a
given (constrained) multi-objective optimisation problem. For the given problems
the MO-PSO-GA proved its reliability and efficiency in comparison with other es-
tablished approaches. The quality of the MO-PSO-GA estimates are at least as
good as, in most cases even better than those estimated by approaches provided20

in Vrugt et al. (2003b); Coello et al. (2004); Gill et al. (2006).

– In a real world case study we compared the multi-objective MO-ROPE approach
with the single-objective robust parameter estimation approach ROPEPSO esti-
mating three conceptual model parameters and three soil parameters of the hy-
drological model WaSiM focussing on flood events. Previous studies have already25

shown that the model has problems to represent the global catchment behaviour
and the peak flow values equally well. That applies in particular to small and fast
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responding catchments. Possible causes include problems with the model struc-
ture, uncertainty in the measurements, etc. The results of this study show that
the multi-objective robust parameter estimation approach is a preferable option in
such cases.

– In the scope of a second application we studied the calibration of WaSiM consid-5

ering both observed discharge and soil moisture in order to obtain hydrologically
reasonable parameter vectors representing the catchment behaviour with respect
to both the discharge at the outlet and soil moisture dynamics. However, the cali-
bration did not improve. That was due to shortcomings in the model structure and
possibly insignificant soil moisture measurements at only one single spot. We10

strongly propose similar applications at larger scale with a sufficient set of gaging
stations.

– Again we showed that parameter vectors with equal model performance on the
calibration data can lead to very different results in validation. The proposed
method of an evolutionary sampling of model parameter vectors by the help of15

data depth functions can help to identify sets of robust parameter vectors. In
general parameters with low data depth are sensitive to small changes and cannot
be tranfered to other time periods as well as those with high depths.

– In this paper, the Pareto optimal set was estimated by the MO-PSO-GA algorithm.
The presented algorithm can be easily substituted by any other suitable multi-20

objective optimisation algorithm. Furthermore the developed MO-PSO-GA can
be easily integrated into a multi-algorithm framework, e.g. AMALGAM (Vrugt and
Robinson, 2007).

The application of the robust parameter estimation approach is a relatively new
method which was applied to a limited number of case studies. We strongly propose25

its application to further models, catchments and also other fields of study where mea-
surement errors with unknown distribution and model structures that cannot be easily
identified are present.
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ETH Nr. 12018, 1997. 3709

Seifert, M.: Untersuchungen zum Einfluss unsicherer Bodeninformationen im Schweizer10

Testeinzugsgebiet Rietholzbach, Master’s thesis, Institut für Hydrologie und Meteorologie,
Technische Universität Dresden, 2010. 3710

Settles, M. and Soule, T.: Breeding swarms: a ga/pso hybrid, in: GECCO ’05: Proceedings of
the 2005 conference on Genetic and evolutionary computation, ACM Press, 161–168, 2005.
370415

Thyer, M., Frost, A. J., and Kuczera, G.: Parameter estimation and model identifica-
tion for stochastic models of annual hydrological data: Is the observed record long
enough?, J. Hydrol., 330, 313–328, available at: http://www.sciencedirect.com/science/
article/B6V6C-4K428WH-2/2/899aa9b003ba9b596314c0e934b79334, 2006. 3700

Thyer, M., Renard, B., Kavetski, D., Kuczera, G., and Srikanthan, S.: Bayesian Total Error20

Analysis For Hydrological Models: Preliminary Evaluation Using Multi-Site Catchment Rain-
fall Data, in: MODSIM 2007 International Congress on Modelling and Simulation, edited by:
Oxley, L. and Kulasiri, D., Modelling and Simulation Society of Australia and New Zealand,
ISBN: 978-0-9758400-4-7, 2007. 3698

Tsou, C.-S.: Multi-objective inventory planning using MOPSO and TOPSIS, Expert Systems25

with Applications, 35, 136–142, doi:10.1016/j.eswa.2007.06.009, 2008. 3699, 3703
Tukey, J. W.: Mathematics and the picturing of data, in: Proceedings of the International

Congress of Mathematicians (Vancouver, B. C., 1974), Canad. Math. Congress, Montreal,
Que., 2, 523–531, 1975. 3705

van Veldhuizen, D. A. and Lamont, G.: Multiobjective evolutionary algorithm research: A history30

and analysis, Tech. Rep. TR-98-03, Dep. of Electr. Comput. Eng., Grad. Sch. of Eng., Air
Force Inst. of Technol., Wright-Patterson Air Force Base, Ohio, 1998. 3707

Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from genetically adaptive

3720

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.jhydrol.2008.08.023
http://www.sciencedirect.com/science/article/B6V6C-4K428WH-2/2/899aa9b003ba9b596314c0e934b79334
http://www.sciencedirect.com/science/article/B6V6C-4K428WH-2/2/899aa9b003ba9b596314c0e934b79334
http://www.sciencedirect.com/science/article/B6V6C-4K428WH-2/2/899aa9b003ba9b596314c0e934b79334
http://dx.doi.org/10.1016/j.eswa.2007.06.009


HESSD
8, 3693–3741, 2011

Robust
multi-objective

calibration strategies

T. Krauße et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

multimethod search, in: Proceedings of the National Academy of Sciences of the United
States of America, available at: www.pnas.org/cgi/content/full/0610471104/DC1 (last ac-
cess: 15 March 2011), 2007. 3709, 3717

Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S.: Effective and efficient
algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39, 1214,5

doi:10.1029/2002WR001746, 2003a. 3707, 3708
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution

Metropolis algorithm for optimization and uncertainty assessment of hydrologic model pa-
rameters, Water Resour. Res., 39, 1201, doi:10.1029/2002Wr001642, 2003b. 3698, 3716

Wagener, T. and Gupta, H.: Model identification for hydrological forecasting under uncertainty,10

Stoch. Env. Res. Risk A., 19, 378–387, doi:10.1007/s00477-005-0006-5, 10.1007/s00477-
005-0006-5, 2005. 3700

Wagener, T. and Wheater, H. S.: A Generic Framework for the Identification of Parsimonious
Rainfall-Runoff Models, in: Integrated Assessment and Decision Support (Proc. First Bien-
nial Meeting of the International Environmental Modelling and Software Society), edited by:15

Rizzoli, A. E. and Jakeman, A. J., 1, 434–439, 2002. 3700
Wolpert, D. H.; Macready, W.: No free lunch theorems for optimization, IEEE T. Evolut. Comput.,

1, 67–82, doi:10.1109/4235.585893, 1997. 3709
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Table 1. Performance metrics for the non-dominated fronts estimated by several evolutionary
multi-objective optimisation algorithms edited according to Gill et al. (2006).

Algorithm GD SP

MO-PSO-GA 0.0006 0.0621
MOPSO; Gill et al. (2006) 0.0122 0.1415
MOPSO; Coello et al. (2004) 0.0365 0.1095
NSGA-II 0.0842 0.0985
Micro-GA 0.1508 0.315
PAES 0.1932 0.1101
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Table 2. Overview of the used model parameters considered for calibration; the reference
parameter vector θwb was estimated in order to use WaSiM for water-balance simulations in the
Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for each
soil according to the pedotransfer functions provided in Wösten et al. (1999) and Brakensiek
et al. (1984).

Parameter Unit Reference Lower/Upper boundary Description
(θwb)

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 1 60 storage coefficient of interflow
dr [–] 2.1 1 80 drainage density

krec [–] 0.1 0.01 1 gradient of ks with increasing depth

ks [ m s−1] 2.22e−5 3.19e−6 1.32e−4 saturated hydraulic conductivity
Θs [–] 0.412 0.38 0.46 saturation water content

βSL =

Krauße et al.: Robust multi-objective calibration strategies 9

Table 2. Overview of the used model parameters considered for calibration; the reference parameter vector θwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for
each soil according to the pedotransfer functions provided in Wösten et al. (1999) and Brakensiek et al. (1984)

parameter unit reference (θwb) lower / upper boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 1 60 storage coefficient of interflow
dr [-] 2.1 1 80 drainage density

krec [-] 0.1 0.01 1 gradient of ks with increasing depth

βSL =


ks [m/s] 2.22e−5 3.19e−6 1.32e−4 saturated hydraulic conductivity
Θs [-] 0.412 0.38 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 4.60 1.62 8.97 empirical shape parameter (MVG)
n [-] 1.29 1.18 1.45 empirical shape parameter (MVG)

βSiL =


ks [m/s] 7.12e−7 1.07e−7 2.95e−6 saturated hydraulic conductivity
Θs [-] 0.42 0.41 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 1.36 0.67 2.17 empirical shape parameter (MVG)
n [-] 1.26 1.14 1.46 empirical shape parameter (MVG)

Table 3. Objective functions used in this study, where qxi , qyi(θ), and Θxi , Θyi(θ) are the observed and simulated discharge and mean soil
moisture at time-step i, respectively. The simulated values are computed by the parameter vector θ. n denotes the number of observation
points

Name Description Formula

NS Nash-Suttcliffe efficiency 1−
1
n

∑n
i=1 (qxi−qyi (θ))

2

1
n

∑n
i=1(qxi−qx)

2

rPD rel. peak flow deviation |qxmax−qymax (θ)|
qxmax

FloodSkill aggregate between NS and rPD 0.5(−(NS−1))+0.5(rPD)

rΘ moisture correlation coefficient
∑
i=1n(Θxi−Θx)·(Θyi−Θy)√

(
∑n
i=1(Θxi−Θx)2·

∑n
i=1(Θyi−Θy)2

general the variance of the estimated distributions is higher
for the multi-objective MO-ROPE approach than for the
single-objective ROPEPSO. Within the single-objective cal-
ibration runs the variance of the estimated distributions for
the model parameters is in general the higher the more global
the considered objective. For instance the variance of the
ROPEPSO NS run estimates tends to be higher than those of
the ROPEPSO rPD estimates. Furthermore there is an obvi-
ously strong dependence of the parameters kd and krec on
the used criterion. The more a correct representation of the
observed peak flow value is measured by the used objective
criterion, the lower the value of kd and the higher the value
of krec. In general these results are reasonable and consistent
with the model structure and the corresponding understand-

ing of the hydrological system. Lower values of kd increase
the dynamics of the generated direct runoff, a higher value of
krec decreases the effective saturated conductivity of deeper
soil layers. This leads to a faster generation of direct runoff.
However, within the basin direct runoff on the surface has
hardly ever been observed, even not during large and inten-
sive convective storm events. Thus these results are already
a subtle hint to shortcomings in the model structure.

This assumption is supported by the achieved calibration
performance for the multi-objective run. The trade-off sur-
face for both rPD and NS on the basis of all parameter vectors
evaluated by the MO-PSO-GA and the estimated approxima-
tion of the Pareto optimal set Ã is given in Figure 8. The
evaluation of the model performances corresponding to the

Θr [–] 0.01 0.01 0.01 residual water content
α [–] 4.60 1.62 8.97 empirical shape parameter (MVG)
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moisture at time-step i, respectively. The simulated values are computed by the parameter vector θ. n denotes the number of observation
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Name Description Formula

NS Nash-Suttcliffe efficiency 1−
1
n

∑n
i=1 (qxi−qyi (θ))

2

1
n

∑n
i=1(qxi−qx)

2

rPD rel. peak flow deviation |qxmax−qymax (θ)|
qxmax

FloodSkill aggregate between NS and rPD 0.5(−(NS−1))+0.5(rPD)

rΘ moisture correlation coefficient
∑
i=1n(Θxi−Θx)·(Θyi−Θy)√

(
∑n
i=1(Θxi−Θx)2·

∑n
i=1(Θyi−Θy)2

general the variance of the estimated distributions is higher
for the multi-objective MO-ROPE approach than for the
single-objective ROPEPSO. Within the single-objective cal-
ibration runs the variance of the estimated distributions for
the model parameters is in general the higher the more global
the considered objective. For instance the variance of the
ROPEPSO NS run estimates tends to be higher than those of
the ROPEPSO rPD estimates. Furthermore there is an obvi-
ously strong dependence of the parameters kd and krec on
the used criterion. The more a correct representation of the
observed peak flow value is measured by the used objective
criterion, the lower the value of kd and the higher the value
of krec. In general these results are reasonable and consistent
with the model structure and the corresponding understand-

ing of the hydrological system. Lower values of kd increase
the dynamics of the generated direct runoff, a higher value of
krec decreases the effective saturated conductivity of deeper
soil layers. This leads to a faster generation of direct runoff.
However, within the basin direct runoff on the surface has
hardly ever been observed, even not during large and inten-
sive convective storm events. Thus these results are already
a subtle hint to shortcomings in the model structure.

This assumption is supported by the achieved calibration
performance for the multi-objective run. The trade-off sur-
face for both rPD and NS on the basis of all parameter vectors
evaluated by the MO-PSO-GA and the estimated approxima-
tion of the Pareto optimal set Ã is given in Figure 8. The
evaluation of the model performances corresponding to the
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Table 3. Objective functions used in this study, where qxi , qyi (θ), and Θxi
, Θyi

(θ) are the
observed and simulated discharge and mean soil moisture at time-step i , respectively. The
simulated values are computed by the parameter vector θ. n denotes the number of observation
points

Name Description Formula

NS Nash-Suttcliffe efficiency 1−
1
n

∑n
i=1 (qxi −qyi (θ))2

1
n

∑n
i=1(qxi −qx)

2

rPD rel. peak flow deviation
qxmax

−qymax
(θ)

qxmax

FloodSkill aggregate between NS and rPD 0.5(−(NS−1))+0.5(rPD)

rΘ moisture correlation coefficient
∑
i=1n(Θxi

−Θx)·(Θyi
−Θy )√

(
∑n
i=1(Θxi

−Θx)2 ·
∑n
i=1(Θyi

−Θy )2
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Table 4. Distribution of the robust parameter vectors of the WaSiM model estimated by MO-
ROPE and the three different single-objective ROPEPSO runs.

kd ki dr βSL βSiL krec

Initial range 0.01–25 1–60 1–80 0.06–16 0.04–9.5 0.01–1

MO-ROPE

2 3 4
0

50

100

20 40 60
0

50

100

40 60 80
0

50

100

0.5 1 1.5
0

50

100

0.5 1 1.5
0

50

100

0.65 0.7 0.75
0

50

100

µ 2.92 38.64 62.74 1.00 1.00 0.69
σ 0.59 12.73 15.96 0.43 0.24 0.04

ROPEPSO rPD

0 0.5 1
0

50

100

0 2 4
0

50

100

55 60 65
0

100

200

0.2 0.3 0.4
0

100

200

1.5 2 2.5
0

200

400

0.85 0.9 0.95
0

50

100

µ 0.12 1.90 59.31 0.24 1.97 0.88
σ 0.12 0.17 0.22 0.01 0.02 0.00

ROPEPSO FloodSkill

2 4 6
0

50

40 50 60
0

50

100

0 50 100
0

50

100

0 2 4
0

50

100

0 0.5
0

50

100

0 0.5 1
0

50

100

µ 3.69 53.87 43.07 2.44 0.18 0.55
σ 0.41 1.85 7.88 0.29 0.06 0.11

ROPEPSO rPD

2 4 6
0

50

100

20 40 60
0

50

100

0 50 100
0

100

200

0 2 4
0

100

200

0 0.5 1
0

50

100

0 0.5 1
0

100

200

µ 3.82 53.62 48.51 0.49 0.28 0.11
σ 0.54 3.56 3.40 0.23 0.10 0.12
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Table 5. Distribution of the estimated robust parameter vectors of the WaSiM model w.r.t. 2
and 3 objectives, respectively.

kd ki dr βSL βSiL krec

2-objective

2 3 4
0

50

100

20 40 60
0

50

100

40 60 80
0

50

100

0.5 1 1.5
0

50

100

0.5 1 1.5
0

50

100

0.65 0.7 0.75
0

50

100

µ 2.92 38.64 62.74 1.00 1.00 0.69
σ 0.59 12.73 15.96 0.43 0.24 0.04

3-objective

2 3 4
0

50

100

20 40 60
0

50

100

40 60 80
0

50

100

0.5 1 1.5
0

50

100

0.5 1 1.5
0

50

100

0 0.2 0.4
0

50

100

µ 2.77 38.43 61.12 0.99 1.00 0.25
σ 0.56 12.69 11.02 0.25 0.18 0.13
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Pareto front

F (Θ)

N
S

rPD

00 0.25 0.5 0.75 1
1

0.5

0

−0.5

−1

Fig. 1. Example of a bi-objective space (rPD, NS), spanned by the model performances com-
puted for feasible parameter vectors of a hydrological model and the corresponding Pareto front.
Consider that the objective rPD has to be minimised, whereas the NS has to be maximised.
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Fig. 2. 2-dimensional point set shaded according to assigned depth. A darker point represents
higher depth. The lines indicate convex hulls enclosing the 25%, 50%, 75% and 100% deepest
points. The used depth function was halfspace depth.
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True front
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Fig. 3. True Pareto front and the non-dominated front estimated by MO-PSO-GA for test func-
tion I.

3729

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3693/2011/hessd-8-3693-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3693–3741, 2011

Robust
multi-objective

calibration strategies

T. Krauße et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

No. rank1 = 2228
θ
2

θ1

0 0.5 1

0

0.5

1
No. rank1 = 2173

θ
2

θ1

0 0.5 1

0

0.5

1

(a) Population size = 10 (b) Population size = 20

No. rank1 = 2194

θ
2

θ1

0 0.5 1

0

0.5

1
No. rank1 = 2146

θ
2

θ1

0 0.5 1

0

0.5

1
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Fig. 4. Scatterplots for the rank 1 points (red dots) for 5000 function evaluations with a pop-
ulation size of (a) 10, (b) 20, (c) 50, and (d) 100 respectively. The boundaries of the triangle
enclosing the true front are the dotdashed blue lines.
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Fig. 5. Scatterplots for the rank 1 points (blue dots) for 50 evaluation generations with a pop-
ulation size of (a) 10, (b) 20, (c) 50, and (d) 100 respectively. The boundaries of the triangle
enclosing the true front are the blue dotdashed blue lines.
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8 Krauße et al.: Robust multi-objective calibration strategies

some revolutionary approaches have been developed to ben-
efit from the strengths of multiple search strategies, e.g. the
multi-algorithm, genetically adaptive multi-objective method
(AMALGAM) presented by Vrugt and Robinson (2007).
Consider that it is easily possible to integrate the developed
search algorithm into such a multi-algorithm framework.

4 Calibrating WaSiM with MO-ROPE focussing on
flood forecasting

As the second application, the complete MO-ROPE ap-
proach is tested on the calibration of the distributed hy-
drological model WaSiM-ETH/6.4 model (in the further re-
ferred to as WaSiM). The model was introduced by Schulla
(1997). WaSiM transforms rainfall into runoff according to
the scheme shown in Figure 6. It exemplary shows that the
soil water compartments receive infiltration which is com-
puted by a modified approach according to Green and Ampt
(1911). This module is also used to determine the direct
runoff Qd and the interflow Qifl in the model. Qd is then
routed via a flow-time grid and finally projected cell-wise to
the catchment outlet by means of a simple bucket type func-
tion. The recession coefficient of this function is the model
parameter kd. The soil water movement through the different
soil layers is modeled by means of the discrete form of the
Richards-equation.

The WaSiM model was calibrated for the Rietholzbach
catchment (3.18km2) a small prealpine catchment located
in the north-east of Switzerland. Figure 7 provides a 3D-
view of the catchment area. A significant number of stud-
ies have been conducted in this basin. For further infor-
mation refer to Gurtz et al. (1999); Zappa (2002) and the
website http://www.iac.ethz.ch/research/rietholzbach. In this
case study WaSiM will be calibrated for the simulation of
extreme discharges. Out of a time series of 27 years (1981-
2008) of hourly measurements (precipitation, temperature,
wind speed, global radiation, and streamflow), 24 signifi-
cant flood events were identified. For further details and a
more comprehensive overview refer to Krauße and Cullmann
(2011a). Five flood events were used for calibration. The es-
timated parameter vectors were validated on 19 other flood
events.

Preliminary sensitivity analyses (Cullmann, 2006; Seifert,
2010) showed that both the uncertainty in the identification
of the soil hydraulic parameters and three further conceptual
model parameters have a tremendous influence on the sim-
ulation results. These parameters were thus considered for
calibration (Table 2). The simultaneous calibration of both
soil hydraulic and conceptual model parameters was done
following an approach provided in Grundmann (2010) that
was already successfully applied in several other case stud-
ies (e.g. Krauße and Cullmann, 2011b). An overview over all
possible objectives referred to in the following case studies
is provied in Table 3.

1
Interflow

2
Interflow

3
Interflow

..
Interflow

ks, Θr, Θs,
α, n, krec

Richards equation
describes soil
water movement

Infiltration
(according to

Green & Ampt)

Precipitation

Direct runoff

Evapotranspiration

Groundwater

Capillary rise

Baseflow

kd

dr, ki

Fig. 6. Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold)

Fig. 7. A 3D-view of the Rietholzbach catchment with the potential
rivers flowpaths.

Comparing single and multi-objective ROPE algorithms

In a first case study we calibrated WaSiM with the MO-
ROPE algorithm in terms of two objective functions: rPD
and NS. The number of function evaluations was set to 5.000.
Additionally we applied the single-objective robust param-
eter estimation algorithm ROPEPSO to this problem using
rPD, NS and their aggregate FloodSkill as objective func-
tions. The distributions of the estimated parameter vectors
and some basic statistical properties, i.e. the mean value µ
and the standard deviation σ, are provided in Table 4. In

Fig. 6. Scheme of the WaSiM soil module with location of impact of soil hydraulic and concep-
tual model parameters (bold).
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Fig. 7. A 3-D-view of the Rietholzbach catchment with the potential rivers flowpaths.
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Fig. 8. Evolution of the trade-off surface of the WaSiM parameter vectors in the two-dimensional
objective space. The grey dots represent the identified approximation of the Pareto optimal set
Ã, whereas the gray crosses represent other dominated parameter vectors that were evaluated
by the algorithm. The best single-criteria solutions (NS and rPD respectively) are indicated by
black dots.
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Fig. 9. Comparison of the identified approximation of the Pareto optimal set Ã (gray dots)
and the subsequently sampled deep parameter vectors Ãd (red dots in the objective space;
additionally the sampled parameter vectors with low depth, i.e. the hull Ãh, are indicated with
blue dots; the scatter plot on the left shows the calibration objective space, the one on the right
the validation objective space.
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Fig. 10. Correlation between data depth and overall validation performance in terms of the
FloodSkill criterion of all robust parameter vectors Ãd estimated during the 2-objective calibra-
tion. The blue dots indicate the hull, i.e. the parameter vectors with low data depth, the red dots
indicate the ones with high data depth, and the grey ones are members of the Pareto set that
are neither deep nor in the hull.
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Fig. 11. Comparison of the robust model parameter vectors estimated by the multi-objective
MO-ROPE (Ãd) and the single-objective ROPEPSO (YrPD, YFloodSkill, and YNS respectively) in the
objective space based on the validation events.
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Fig. 12. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter
shading) and parameter estimates (darker shading) for the flood events 6 (a), 8 (b) and 13 (c),
estimated by MO-ROPE (left column) in terms of rPD and NS and ROPEPSO in terms of the
FloodSkill (right column). The dots correspond to the observed streamflow data. The shaded
areas of uncertainty correspond to the 95% confidence intervals.
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Fig. 13. Lysimeter station located in the centre of the Rietholzbach catchment.
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Ã

Ãd
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Fig. 14. Comparison of the Pareto optimal sets Ã and the subsequently sampled set of deep
parameter vectors Ãd for the 2-objective (left) and 3-objective (right) calibration run in the objec-
tive space based on the validation events; below is a boxplot of the corresponding soil moisture
correlation rΘ for the sets Ãd each.
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Fig. 15. Correlation between data depth and overall validation performance in terms of the
soil moisture correlation rΘ of all robust parameter vectors Ãd estimated during the 2-objective
calibration. The blue dots indicate the hull, i.e. the parameter vectors with low data depth and
the red dots indicate the ones with high data depth.
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